Drawing Bohr Diagrams

Example 1

Draw a Bohr diagram of a single fluorine atom. ${ }_{9}^{19} F$

Step 1

Determine the number of subatomic particles in the atom.
Number of Protons $=$ Atomic Number
Number of Electrons = Atomic Number
Number of Neutrons $=$ Mass Number - Atomic Number

Step 2

Draw a circle to represent the nucleus. Inside the circle, label the number of protons and neutrons.

Step 3

Draw the correct number of orbits. (Note: The number of orbits is equal to the row the element is in on the periodic table.)

Since fluorine is in the second row, it has two orbits.

Step 4

Draw the electrons as dots on the orbits.

- start by placing electrons on the innermost orbit first
- once an orbit is full, move to the next orbit (work your way out from the center)
- each orbit can hold a maximum amount of electrons:
- first orbit can hold 2 electrons
- second orbit can hold 8 electrons
- third orbit can hold 8 electrons

Fluorine should have 9 electrons. The first orbit will hold 2 (the maximum it can hold) and the remaining 7 will go in the second orbit.

Example 2

Draw a Bohr diagram of a single atom of magnesium. ${ }_{12}^{24} \mathrm{Mg}$

Homework

Draw Bohr diagrams for the first 18 elements on the periodic table (Atomic numbers 1 to 18).

